第121部分(第3/4頁)
章節報錯
銳一鈍相違,垂弧丙丁,從外補正,自在形外。在形內者判底邊為二,兩得分邊之度,如乙丁、丁甲,合而成一底邊如乙甲,故宜相加。在形外者,引底邊之餘,兩得分邊之度,如庚丁、乙丁,重而不揜,底邊如庚乙,故宜相減。銳鈍大小之相應,亦如右圖審之。所知兩邊對所知兩角有一正,則一得度即為不知之邊,理亦自明。
六曰三邊求角,以所求角旁兩邊正弦相乘為一率,半徑自乘為二率,兩邊相減餘為較弧,取其正矢與對邊之正矢相減餘為三率,求得四率,為所求角正矢。此其理在兩次比例省為一次。如圖甲壬乙形,求甲角,其正矢為醜丁。法當以甲乙邊正弦乙丙為一率,半徑乙己為二率,兩邊較弧正矢乙癸與對邊正矢乙卯相減餘癸卯同辛子為三率,求得四率為壬辛。乃以甲壬邊正弦戊辛為一率,壬辛為二率,半徑己丁為三率,求得四率為醜丁。甲角正矢亦以乘除相報,故從省焉。
七曰三角或銳、或鈍求邊,以角為邊,反求其角;既得角,復取為邊;求、取皆與半周相減。此其理在次形,如圖甲乙丙形,甲角之度為丁戊,與半周相減為戊己,其度必同於次形子辛午之子辛邊,蓋醜卯為乙之角度醜點之交,甲乙弧必為正角,丁戊為甲之角度戊點之交,甲乙弧亦必為正角。以一甲乙而交醜辛、戊辛二弧皆成正角,則二弧必皆九十度,弧三角之勢如此也。戊辛既九十度,子己亦九十度,去相覆之戊子,己戊自同子辛,於是庚癸必同子午,卯未必同午辛,理皆如是矣。而此形之餘角既皆為彼形之邊,彼形餘角不得不為此形之邊,故反取之而得焉。若三角有一正,除正角外,以一角之正弦為一率,又一角之餘弦為二率,半徑為三率,求得四率,為對又一角之邊餘弦。此其理亦系次形,而以正角及一角為次形之角,以又一角加減象限為次形對角之邊,取象稍異。
凡茲七術,惟邊角相求,有銳鈍、大小不能定者,然推步無其題,不備列。此七題中求邊角有未盡者,互按得之。
橢圓形者,兩端徑長、兩腰徑短之圓面。然必其應規,乃可推算。作之之術,任以兩點各為心,一點為界,各用一針釘之,圍以絲線,末以鉛筆代為界之。針引而旋轉,即成橢圓形。如圖甲己午三點,如法作之,為醜午巳未橢圓,寅醜、寅巳為大半徑,寅午、寅未為小半徑,寅甲為兩心差,己甲為倍兩心差。甲午數如寅巳,亦同寅醜,己午如之;二數相和,恆與醜巳同。令午針引至申,甲申、申己長短雖殊,共數不易。甲午同大半徑之數如弦,兩心差如勾,小半徑如股,但知兩數,即可以勾股術得不知之一數。若求面積,以平方面率四00000000為一率,平圓面率三一四一五九二六五為二率,大小徑相乘成長方面為三率,求得四率為橢圓面積。若求中率半徑,大小半徑相乘,平方開之即得。然自甲心出線,離醜右旋,如圖至戌,甲醜、甲戌之間,有所割之面積,亦有所當之角度。
角積相求,爰有四術:
一曰以角求積,以半徑為一率,所知角度正弦為二率,倍兩心差為三率,求得四率為倍兩心差之端,垂線如己酉。又以半徑為一率,所知角度餘弦為二率,倍兩心差為三率,求得四率為界度積線,引出之線如甲酉,倍兩心差之端垂線為勾自乘。以引出之線,與甲戌、己戌和如巳醜大徑者相加為股弦和,除之得較。和、較相加折半為己戌弦,與大徑相減為甲戌線。又以半徑為一率,所知角正弦為二率,甲戌線為三率,求得四率為戌亥邊。又以小徑為一率,大徑為二率,戌亥邊為三率,求得四率為辰亥邊。又以大半徑寅辰同寅醜為一率,半徑為二率,辰亥邊為三率,求得四率為正弦,對錶得度。又以半周天一百八十度化秒為一率,半圓周三一四一五九二六為二率,所得度化秒為三率,求得四率為比例弧線。又以半徑為一率,大半徑為二率,比例弧線為三率,求得四率為辰醜弧