求太陰半徑,以太陰最高距地為一率,地半徑比例數為二率,太陰距地心線內減去次均輪半徑為三率,求得四率為太陰距地。又以太陰距地為一率,太陰實半徑為二率,本天半徑為三率,求得四率為正弦。檢表得太陰半徑。

求地影半徑,以太陽最高距地為一率,地半徑比例數為二率,太陽距地心線為三率,求得四率為太陽距地。又以太陽光分半徑內減地半徑為一率,太陽距地為二率,地半徑為三率,求得四率為地影之長。又以地影長為一率,地半徑為二率,本天半徑為三率,求得四率為正弦,檢表得地影角。又以本天半徑為一率,地影角之正切為二率,地影長內減太陰距地為三率,求得四率為太陰所入地影之闊。乃以太陰距地為一率,地影之闊為二率,本天半徑為三率,求得四率為正切,檢表得地影半徑。

求食分,以太陰全徑為一率,十分為二率,並徑太陰地影兩半徑相併。內減食甚距緯之較並徑不及減距緯即不食。為三率,求得四率即食分。

求初虧、復圓時刻,以食甚距緯之餘弦為一率,並徑之餘弦為二率,半徑千萬為三率,求得四率為餘弦,檢表得初虧、復圓距弧。又以月距日實行化秒為一率,一小時化秒為二率,初虧、復圓距弧化秒為三率,求得四率為秒。以時分收之,為初虧、復圓距時。以加減食甚時刻,得初虧、復圓時刻。減得初虧,加得復圓。

求食既、生光時刻,以食甚距緯之餘弦為一率,兩半徑較之餘弦為二率,半徑千萬為三率,求得四率為餘弦,檢表得食既、生光距弧。又以月距日實行化秒為一率,一小時化秒為二率,食既、生光距弧化秒為三率,求得四率為秒。以時分收之,為食既、生光距時。以加減食甚時刻,得食既、生光時刻。減得食既,加得生光。

求食限總時,以初虧、復圓距時倍之,即得。

求太陰黃道經緯度,置太陽黃道經度,加減六宮,過六宮則減去六宮,不及六宮,則加六宮。再加減食甚距弧,又加減黃白升度差,求升度差法,詳月離求黃道實行條。得太陰黃道經度。求緯度,詳月離。

求太陰赤道經緯度,詳月離求太陰出入時刻條。

求宿度,同日躔。

求黃道地平交角,以食甚時刻變赤道度,每時之四分變一度。又於太陽赤道經度內減三宮,不及減者,加十二宮減之。餘為太陽距春分赤道度。兩數相加,滿全周去之。為春分距子正赤道度。與半周相減,得春分距午正東西赤道度。過半周者,減去半周,為午正西。不及半周者,去減半周,為午正東。春分距午正東西度過象限者,與半周相減,餘為秋分距午正東西赤道度。秋分距午東西,與春分相反。以春秋分距午正東西度與九十度相減,餘為春秋分距地平赤道度。乃用為弧三角形之一邊,以黃赤大距及赤道地平交角即赤道地平上高度,春分午西、秋分午東者用此。若春分午東、秋分午西者,則以此度與半周相減用其餘。為邊傍之兩角,求得對邊之角,為黃道地平交角。春分午東、秋分午西者,得數即為黃道地平交角。春分午西、秋分午東者,則以得數與半周相減,餘為黃道地平交角。

求黃道高弧交角,以黃道地平交角之正弦為一率,赤道地平交角之正弦為二率,春秋分距地平赤道度之正弦為三率,求得四率為正弦,檢表得春秋分距地平黃道度。又視春秋分在地平上者,以太陰黃道經度與三宮、九宮相減,春分與三宮相減,秋分與九宮相減。餘為太陰距春秋分黃道度。春秋分宮度大於太陰宮度,為距春秋分前;反此則在後。又以春秋分距地平黃道度與太陰距春秋分黃道度相加減,為太陰距地平黃道度,春秋分在午正西者,太陰在分後則加,在分前則減;春秋分在午正東者反是。隨視其距限之東西。春秋分在午正西者,太陰距地平黃道度不及九十度為限西,過九十度為限東;春