第132部分(第4/4頁)
章節報錯
陰最大地半徑差六十分七秒,太陰黃道實緯度南三度三十分二十七秒,司怪第四星黃道緯度南三度十一分四十四秒,一小時太陰實行三十六分三十三秒,求星月相距分秒凌犯視時。如圖甲為天頂,甲未辰巳為黃道經圈,辰午巳為地平,卯為黃極,未午辛為黃道,未點即黃平象限宮度,未辰弧即限距地高,與卯甲黃極距天頂之度等。申點為太陰,子點為司怪第四星,同當黃道於酉。其酉點即月與星之黃道經度,酉未弧即月距限西之度,子酉為星距黃道南緯度三度十一分四十四秒,申酉為太陰距黃道南實緯度三度三十分二十七秒,申卯弧即月距黃極,甲申戌為高弧,申甲為月距天頂度五十三度四十三分二十四秒,卯申甲角為黃經高弧交角五十六度二分五十一秒,而與戌申亥角為對角,其度等。此皆自地心立算之實度也。然人居地面高於地心,故視高常低於實高,而月當地平時,其地半徑差為最大,今乃六十分七秒。於是依後編求本時高下差之法,以半徑與甲申弧正弦之比同於最大地半徑差與本時高下差之比,得本時高下差四十八分二十八秒。如申火之分,其火點即太陰之視高,自火點與黃道平行,作火木線,遂成申木火直角三角形。因弧度甚小,乃作直線算,與後編求日食三差之理同。此形木為直角,有申角黃經高弧交角,有申火邊本時高下差,求得木火邊四十分十二秒為東西差,求得申木邊二十七分四秒為南北差,加於申酉太陰實緯,得木酉太陰視緯三度五十七分三十一秒。內減子酉星緯,得子木弧四十五分四十七秒,為人目仰視太陰距司怪第四星月在星下之分也。夫星、月同當酉點之經度,固為相距。今太陰視高在火,其視緯雖差至木,而距星之子點尚在一度內,其火點當黃道之視經度則差至土,是用時時星經度雖在酉,而太陰視經度之土點乃在其西,是為未及。然土酉之分與火木等,故以一小時太陰實行與火木東西差為比例,得距分一時六分,為月行火木之時分。加於月視高臨火點之用時,得亥初二刻十四分十九秒,即人目視太陰臨於木點與星,同當酉點經度之視時也。
圖形尚無資料
求視時月距限
視時月距限,必大於用時月距限,因其視經差所當之距分既有加減,則太陰與星隨天西移自有進退也。蓋太陰以地半徑差由高而變下,則視經之差於實經、視緯之差於實緯必矣。茲據黃平象限在天頂南之地面而言之,視緯恆差而南,如實緯北者,視緯常小於實緯,其差為減;實緯南者,視緯常大於實緯,其差為加。故緯南之星、月實距雖在一度內,而視距轉在一度外者有之;緯北之星、月實距雖在一度外,而視距轉在一度內者有之。南北相距一度外者不入凌犯之限,故不取用。至若視經之差,所當月行距分之最大者或至二小時,而二小時之際,諸曜隨天左旋,幾至一宮,故視經之差,關於月行之進退矣。如月在黃平象限西者,視經度差之而西,視時必遲於用時;月在黃平象限東者,視經度差之而東,視時必早於用時。以致用時星、月未入地平,而視時星、月已入地平者有之,或用時星、月已出地平,而視時星、月未出地平者有之。是故於求用時之後,即以月距黃平象限與地平限度相較,可知斯時月在地平之上下。月距限小於地平限度者,為月在地平上;大於地平限度者,為月在地平下。如遇月距限微小於地平限度者,用時星、月必在地平上,視時星、月或在地平下,其所差者,即視經之�