。其兩時差既為一加一減,而所減者又大於應加之分,故先以兩時差相減,得醜午時分二分四十一秒,而為時差此因兩時差加減異號故相減,若同號則相加,所謂兩數通為一數也。又因減數大於加數,故仍從減,若加數大者則從加矣。乃減於午點凌犯時刻戌正二刻十一分,即得醜點戌正二刻八分十九秒,為凌犯用時也。

一率半徑

二率庚角餘弦

三率庚子弧正切

四率庚醜弧正切

圖形尚無資料

又設凌犯時刻醜正一刻,太陽引數三宮十三度二十九分,黃道實行三宮二十五度三十四分,求用時。如子為太陽實行之點,當赤道於醜,其醜點即所臨之用時。卯為太陽平行之點,當赤道於辰,其子卯為應加之均數一度五十二分二十五秒,亦自卯子二點與過極至經圈平行作卯醜、子未二距等圈,其平行卯點映於赤道,恰與實行當赤道之醜點合,是由平行所得之時刻,已合實行實臨赤道之用時,遇此可無庸求其時差也。然何以知之,蓋兩時差之數相等,必減盡無餘,即無時差之總數矣。今試按法求之,既作卯醜、子未二線,其庚醜與庚卯等,庚未與庚子等,則醜未必與卯子均數等,變時得七分三十秒,即赤道上應減之均數時差。次用庚醜子正弧三角形,求得庚醜弧赤道度,與庚子弧黃道度相等之庚未弧相減,得醜未弧,黃赤升度差恰與均數等。變時亦得七分三十秒,即赤道上應加之升度時差。其時差一為加、一為減,而兩數相等,乃減盡無餘,既無時差之總數,則其凌犯時刻即為用時可知矣。此法以醜點凌犯時刻減去均數時差,得未點實行虛映之時刻,而復加相等之升度時差,所得用時,固仍在醜點之位,蓋因太陽平行距春分後黃道度等於太陽實行距春分後赤道度故也。又如太陽正當本天之最卑或最高,乃無平行實行之差,自無均數時差,止加減升度時差一數。設太陽當本天最卑,又當子正,如太陽在黃道之子點,則庚乙與庚子等,以庚醜子正弧形求得醜乙黃赤升度差。變時減於乙點時刻,即得醜點用時,乃在乙點子正之前也。若太陽當本天最高,又當午正,如太陽在黃道之午點,則壬丁與壬午等,以壬寅午正弧形求得寅丁黃赤升度差,變時減於丁點時刻,即得寅點用時,乃在丁點午正之前也。

圖形尚無資料

又如太陽實行正當冬、夏至或正當春、秋分,此四點皆無黃道赤道之差,自無升度時差,止加減均數時差一數。設太陽實行六宮初度為正當夏至,在黃道之辛點,當赤道於戊,而平行卯點,當赤道於辰,自卯點與丙甲戊過極至經圈平行作卯午距等圈,則午點為凌犯時刻,其戊午與辛卯均數等,變時得均數時差。減於午點而得戊點,即用時也。

圖形尚無資料

求春分距午時分、黃平象限宮度及限距地高

推算太陰凌犯視差,固依後編求日食三差之法,而其為用不同。蓋日食之東西差為求視距弧,而南北差為求視緯,其視距弧、視緯則為求視相距及視行之用。緣太陰行於白道,是必以白平象限為準焉。若五星之距恆星、五星之互相距,皆以黃道同經度之時為相距時刻,而較黃緯南北相距之數為其上下之分也。至月距五星、月距恆星,亦皆以黃道經度相同之時為凌犯時刻,不更問白道經度,其於白平象限又何與焉?然其以東西差定視時之進退,以南北差判視緯之大小,以定視距之遠近者,其差皆黃道經緯之差,故必以黃平象限之宮度為準。黃平象限者,地平上黃道半周適中之點也。顧黃道與赤道斜交,地平上赤道半周適中之點,恆當子午圈,而地平上黃道半周適中之點,則時有更易。蓋黃極由負黃極圈每日隨天左旋,繞赤極一週,如黃極在赤極之南,則冬至當午正,其黃道斜升斜降;若黃極在赤極之北,則夏至當午正,其黃道正升正降,而黃平象限亦皆恰當子午圈;設黃極在